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LETTER TO THE EDITOR 

Comparison between the exact and Brody repulsion function 
for the p n 2  spectrum 

C Joachim 
Laboratoire de Physique Quantique, Universitt Paul Sabatier, 118 route de Narbonne, 
3 1062 Toulouse Cedex, France 

Received 6 September 1985 

Abstract. From the secular variation extraction of the nearest-neighbour spacing repartition 
function of the spectrum without an accumulation point in the part studied, an ab initio 
expression of the repulsion function is given. This expression is calculated for a p n 2  
spectrum and compared with the Brody semi-empiric repulsion function. The Brody 
parameters are not evaluated by fitting but calculated from the first and second moments 
of the nearest-neighbour spacing. Notable differences are found between the two 
expressions, differences which persist even for more complex spectra. 

Since the early work of Thiele (1963) and Haarhoff (1963), we know how to approximate 
analytically the density of a Hermitian operator discrete spectrum by the use (under 
certain conditions of the Hermitian operator recalled below) of the inverse Laplace 
transform. The next step is the description of this discrete spectrum in the approxima- 
tion of its k-spacing repartition function (‘k-spacing’ for kth neighbour spacing). 

The characterisation of the k-spacing repartition is important because classifications 
of intramolecular behaviour like IVR (Felker and Zewail 1985) or searching in selective 
chemistry (Levine 1980) are based on the ‘moments’ of the state repartition on R which 
control the intramolecular dynamics (Pechukas 1982). 

The Wigner repulsion function (Wigner 1967) generalised by Brody (Brody et a1 
1981) and calculated by Berry within a semiclassical approximation (Berry and Tabor 
1977) leads to a characterisation of the l-spacing distribution (the nearest-neighbour 
spacing distribution) which is a ‘semi-empiric’ characterisation; the studies of the 
l-spacing distribution and of the so-called repulsion parameters q have always been 
restricted for a given quantum spectrum to the best fitting of a states histogram after 
computer classification of the spacings (see for example Camarda and Georgopulos 
(1983), Haller er a1 (1983) and Ishikawa and Yakawa (1985)). 

We report in this letter preliminary work on the analytic approximation of the 
first-order repulsion function r l (  z, y )  associated with the l-spacing distribution. We 
recall below the spectrum decomposition method which leads to the k-spacing distribu- 
tion and to the analytic formal expression of the repulsion function. The repulsion 
function associated with the simple ‘pn’ spectrum’ is then explicitly calculated and 
compared with the one computed with the states histogram. 

Later in this letter, the generalised repulsion function introduced by Brody is 
calculated directly from the knowledge of the spectrum without any histogram fitting 
and applied to the ‘ p n 2  spectrum’. Finally we compare this semi-empiric approximation 
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with the ab initio repulsion function calculated below and we present another example 
where the failure of the semi-empiric Brody repulsion function is much more important 
than in the ‘ p n ”  case. 

Let us con$der the discrfte spectrum c d i s c ( f i X )  of a semi-bound from below 
Hamiltonian Hx with cdisc( H x )  c [ wx, +CO[ .  The first interesting characteristic of 
cdisc(fiX) is the density of states px(x)  which carries global information about the 
repartition of states on [ w x ,  + C O [ .  A continuous approximation px(x)  of px(x)  is 
directly obtained from the truncation (Thiele 1963) 

of the (d/dx)(  Nx(x) )  inverse Laplace transform if the Vdlsc( f i x )  repartition function 
Nx(x)  is majorable by exp(ax) with a a constant. For another class of spectrum, this 
approximation can only be used when cdlsc(  f i x )  has no accumulation point (Joachim 
1985) with the reciprocal function of Nx(x)  substituted to N x ( x )  in (1). 

To complete this global CharacJeriSation of c d l s c (  f i x ) ,  generally called the secular 
variation characterisation of cdlsc(  H x  ), one introduces a local characterisation obtained 
by the elimination in Nx(x)  of the absolute state position already contained in px(x)  
by averaging. 

Consider a bound interval [ wx, y ]  of [ wx, +a[ without an accumulation point (if 
any in c d , s , ( f i x ) )  and the associated repartition function nx(x, y )  defined by 

n x ( x , Y ) =  N x ( x ) ( l - o ( x , Y ) ) + N x ( Y ) o ( x - Y )  ( 2 )  

with O(x)  the Heaviside function. 
The self-correlation c p p ( z )  of the density p = (d/dx)n,(x, y )  is only a function of 

the k-spacing repartition function where a k-spacing Z,( j )  is defined by & ( j ) =  
X,+k-X,, X, E A \ y )  and A ( Y )  = f ld lsc( f ix)  

cpp ( Z )  = p ( x ) p (  x - Z )  dz = 

[ w x ,  Y l :  

19( p)12)( Z )  

s - 1  

5 
=&+ c ( N x ( y ) - k ) ( a / a z ) F ; ( z , y ) +  ’fl ( N x ( y ) - k ) ( d l d z ) F ; ( z , y )  

k = l  k = l  

(3) 
with 9 the Fourier transform, s =card ( A ( y ) )  and F ; ( z ,  y )  the k-spacing repartition 
functions defined by 

Then a local characterisation of the edi,c(fiX) properties restricted to [ w x , y ]  is 
reached by the e x t r p i o n  of the information carried by F ; ( z , y )  (or F ; ( z , y )  by 
symmetry) on c d i s c ( f f X ) .  The highest term considered in the spacing amplitude gives 
the precision of the local characterisation of A ( y ) .  

Limiting the order to k = 1, we have two methods to characterise the information 
on A ( y )  carried by F ; ( z , y )  for a fixed y :  the characterisation of the 1-spacing 
distribution by its moments or by the extraction of the secular variation of F:(z, y )  
with a truncation like (1). The repulsion function comes from the second method (see 
below) and the first one will be used later to deduce a semi-empiric value of the Brody 
repulsion parameter. 
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Because F:(z, y )  is a step normalised function on a subset of U&C(f ix ) ,  without 
an accumulation point by hypothesis, the truncation (1) can always be applied to the 
extraction of this secular variation, with (4) in (1) for k = 1, we obtain 

F : (z ,y)=(N,(y) - l )  1 residue 1 exp[-p(Z, ( j )+z) ] /p ,pole  . ( 5 )  
poles R (;:: ) 

Like F:(z, y ) ,  F;(z, y )  has bound variations and these variations decrease when 
F:(z, y )  is closed to its upper bound. Then the variations in z of F:(z, y )  are at least 
proportional to (1 - l?(z, y ) )  and because FT(z ,  y )  depends on the properties of A ( y ) ,  
the proportionality coefficient must be a function of y ,  but also of z. This leads from 
the knowledge of F:(z, y )  to the introduction of a function r,(z, y )  defined by 

rl(z, Y )  = --(d/dz)[log(l-  F:(z, y ) l  ( 6 )  

which gives after integration of (6) the we\! known expression for thef,(z, y )  I-spacing 
density function (Brody et (11 1981) 

The function rl(z, y )  (usually named the repulsion function (Brody et a1 1981)) 
characterises, as an equivalent of FT(z, y )  by definition, the secular variation of the 
1-spacing repartition function. The principal intercst of rl(z, y )  in the case of a well 
defined discrete spectrum is the expression proposed by Brody to approach this function 
which reduces the local characterisation of A ( y )  to a single parameter (see below). 

To compare the continuous r,(z, y )  defined by (6) with the approximation proposed 
in the literature, we need first of all the ab initio r,(z, y),  that is, the repulsion function 
calculated directly from (8) with F:(z, y )  from ( 5 ) .  But not many such r,(z, y )  can 
be explicitly calculated. The rl(z, y )  extracted below comes from the Hamiltonian 

f i p  = ";* Pn21n)(nl p E R+*. 

Elements of U d I s c ( f i @ )  are of the type p n 2  and the 1-spacing element Z,(n) = p ( 2 n  + 1) 
on the interval [ p, x,]; truncation (5) and definition (6) leads, for the Zl( n) = p ( 2 n  + 1) 
of p n 2  spectra, to (see appendix 1) 

(8) 
{ ~ P " P ( x J - z ) - '  for 2p s z s 2p, 

for z < 2p and z > 2pF. rI(z, xs) = 

The repulsion function (8) is represented in figure 1 with the function derived from 
the F:( z, x,) histogram. 

The limiting factor in the ab initio calculation of rl(z, y )  is the secular variation 
extraciion of F:(z,  y )  because after the construction of the 1-spacing set directly from 
g d , s c ( H x ) ,  one needs to reordinate this set before the use of the truncation (5). Even 
for the Sinai billard a n 2 + p m 2  spectrum, the calculation of FT(z ,y)  is not trivial. 

Then 'semi-empiric' approximations of I ,  (z, y ) are required. 'Semi-empiric' is taken 
here in the sense of tl-e use of a parametrised 5ontinuous function for rl(  z, y )  with the 
parameters calculated, computed from vddlsC(Hx) or optimised from the F:(z, y )  his- 
togram. 

To evaluate these parameters for the well known Brody repulsion function rI(  z, y )  = 
a ( q ( y ) ,  J J ) Z ~ ( ~ ) ,  q ( y )  E U2 one usually fits the fl(z, y )  calculated from the Brody r , ( z ,  y)  
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Figure 1. Repulsion function for the p n 2  spectrum on A ( y )  = [ p, y ]  with p = 3, y = 3 x lo4 
and M , ( y )  = 303. The step function corresponds to the r , ( z ,  y )  computed from the F:(z,  y )  
histogram and the dotted curve function to the ab initio r , ( z ,  y )  calculated from (8). 

introduced in ( 7 )  with the one computed from the F:(z, y )  histogram. The dependence 
on q(y) of a(y,  q(y))  may or may not be explicitly taken into account (see for example 
Camarda and Georgopulos (1983), Haller et a1 (1983) and Ishikawa and Yakawa 
(1985)). 

For a well defined spectrum, a direct evaluation of these parameters is possible, 
without any fitting, from the moments M,,(y) of the 1-spacing distribution defined as 

Such an evaluation of the Brody coefficient is more easily compared with the ab 
initio calculation because the fitting generally depends on the number of classes chosen 
to compute the f l ( z ,  y)  histogram (Casati et al 1985). 

After a choice of the r l ( z ,  y )  semi-empiric expression, the moments fi, ,(y) of the 
approximated f i ( z ,  y) are calculated as in (9) with the use of (7 ) .  By identification of 
the M,,(y) and the A?,(y) at each order (this is the semi-empiric optimisation step), 
we obtain a system of equations. These solutions give the value of the parameters 
considered in the r,(z, y)  expression. 

For the two Brody parameters r l ( z ,  y), only the first- and the second-order moments 
have to be calculated: 
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from the properties of the Eulerian function with rl (z ,  y )  = a(y ,  q(y))z4‘” substituted 
in (7).  

For a fixed y and after identification of G j ( y )  with M j ( y ) ,  this leads to the two 
coupled equations with q and a as unknowns: 

As is shown in figure 2 and because r ]  = M 2 ( y ) M , ( y ) - 2  2 0,  equation ( 1  1 )  admits 
an unique solution belonging to 1-1,  +a[ for a given r]. The parameters q ( y )  carries 
through ( 1  1 )  the level of state non-equally spacing on A ( y )  because r ]  - 1 is equal to 
the 1-spacing distribution variance normalised by M , ( y ) .  

10 

0 
A 

1 

0 0 5  1 2 3 4 
( 7  I y l -  11 ’ ‘ 2  

Figure 2. Evolution of the equation ( 1 1 )  solution q ( y )  as a function of the ratio 
M , ( y ) / M : ( y )  with r ) ( y )  = M , ( y ) / M ? ( y ) .  The q ( y )  corresponding to the well known 
Poisson and Wigner f,(z, y )  positions are shown. 

The important fact is that q ( y )  is not restricted to [0, 13 as proposed by Buch et a1 
(1982) for fitted q ( y ) .  With q ( y )  going from +a to -1 ,  we come from equally spaced 
spectra, going to randomly spaced ones (the well known Poisson distribution with 
q = l ) ,  to reach spectra with an inhomogeneous distribution of states where aggregations 
of states exist. 

( r ]  - 1)1’2 = 1.934 and from figure 2 q ( y )  = -0.443. Even vibrational spectra with a 
large number of modes can have negative q ( y )  values depending on the frequency 
mode repartition (Joachim 1986): for eight vibrational modes with a repartition 
law on [600 cm-I, 4000 cm-’1 and y = 2 x lo4 cm-I, ( r ]  - 1)”* = 3.85 and q ( y )  = -0.65. 

Hydrogenic n-’ spectra, for example, belong to this class; for y = 2.5 x 
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However, this explicit relation between the level of equally spacing spectra and 
q ( y )  does not mean that the Brody semi-empiric repulsion function optimised with 
(11) and (12) is a good approximation of the ab initio rl(z,  y ) .  It only means that for 
a well defined spectrum and after the direct computation of M,(y) ,  one can obtain a 
1-spacing distribution with only first and second moments equal to that of the spectrum. 
Higher-order moments of fi(z, y )  have not been used which may lead to a bad 
approximation for the inhomogeneous distribution of states. 

For the p n 2  spectrum studied earlier, the q ( y )  solutions of (11) are given in figure 
3 as a function of y.  The 7 - 1 ratio has been calculated directly from the Z , ( n )  
distribution and is equal to s(s -2)/3(s + 1)’ for y = x,. For low values of s, q ( x , )  is 
very sensitive to local properties of the pn’ spectrum and distinguishes well situations 
very close in 7 - 1. This is not the case for large s because 7 - 1 tends to its asymptotic 
value which means that 7) - 1 is no more sensitive to local properties of the spectrum; 
the state density of the pn’ spectrum decreases and the characterisation of local 
properties loses its interest. 

The ab initio rl(z, y )  and the Brody semi-empiric function, both calculated above 
for the pn’ spectrum, are given in figure 4 for three different y values with /3 = 3. For 
0.2Ml(y) c: z < 1.5Ml(y) the ab initio and Brody rl(z, y )  are relatively close but do not 
have the same curvature. The semi empiric Brody approximation fails for low and 

2 7 13 1 8  
5 

0 2  100 3 00 5 00 
S 

Figure 3. Value of the repulsion parameter q ( y )  for the p n 2  spectrum as a function of 
s=card(A(y)) .  Each q ( x , ) i s a s o l u t i o n o f ( l l )  with ~ ( x , ) - l = [ s ( s - 2 ) ] / [ p ( ~ + l ) ~ ]  and 
p = ’  3 .  F or A(y)=ud, , , (Hp) ,  q(x+m)=0.79148 and for card(A(y))=2,  q ( x 2 ) = + m .  
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Figure 4. Comparison between the ab initio and Brody semi-empiric r l ( z ,y ) .  Ab initio 
r l ( z , y )  are obtained from (8) and Brody semi-empiric r I ( z , y )  from (11) and (12); ( a )  
y = 300, M,(y) = 33, q ( y )  = 1.254 and a(y ,  q ( y ) )  =6.47 x ( b )  y = 3 x lo4, M , ( y )  = 303, 
q ( y )  = 0.8314 and a b ,  q ( y ) )  = 4.21 x lo+,  ( c )  y = 3 x lo8, M,(y) = 300 03, q ( y )  = 0.7915 
and a ( y ,  q ( y ) )  = 1 . 3 8 ~  

high z values. The failure is much more important for high z values; the ab initio 
r l ( z ,  y )  gives a constant f , ( z ,  y )  on [2p, 2psl and  the semi-empiric r l ( z ,  y )  gives a 
decreasing exponential f l ( z ,  y ) .  Notice that no scaling effect appears between y = 10 
and y = lo4. 

Thus, the semi-empiric Brody r l ( z ,  y )  is not a good approximation for the r l ( z ,  y)pn’ 
spectrum. The same problem exists also for more complex spectra, even for the well 
known a m 2 +  n 2  spectra with a an irrational number (see below) and is under investiga- 
tion for vibrational spectra (Joachim 1986). 

For this class of spectra, depending on the commensurability between the vibration 
frequency mode the 1-spacing distribution can be monomodal, bimodal or higher 
(Berry and Tabor 1977, Joachim 1985) and tends to be monomodal when the number 
of modes increases. Then the q ( y )  parameter cannot be used alone to characterise the 
local properties of all the types of vibrational spectra because the Brody r l ( z ,  y )  leads 
by construction to monomodal f , ( z ,  y ) .  
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As for the p n 2  spectrum, higher-order moments of the 1-spacing and moments of 
the other k-spacing are needed to construct a more accurate semi-empiric repulsion 
function which covers the monomodal and the others. We have no means to say for 
example that the bimodal case is ‘artificial’ (Buch et a1 1982) because it is not the 
spectrum which needs to be adapted to the Brody repulsion function but this semi- 
empiric approximation which needs to be improved for the local characterisation of 
a large class of well defined spectra. 

Another interesting point is the difference between the calculated solution from 
(11) and the optimised solution by fitting q(y). They are not always equal even for a 
random distribution of states: for 6 x lo3 states with a uniform low on [ 1,5001 and 
y = 499.91, the calculated q(y) = and the optimised q(y) = 0.0. But for a Sinai 
d h 2 +  n2 billard spectrum and y = 9218.779 (card(A(y)) = 6 x lo3) the calculated 
q(y) = 4 x  and the optimised q(y) = 0.0. This confirms that the Poisson law is not 
completely adapted for the description of the local properties of the Sinai billard 
spectrum (Casati et al 1985). 

It seems from simulations that these differences between calculated and optimised 
q(y) can be used to appreciate the degree of validity of the Brody semi-empiric 
approximation. But this needs demonstration and not only simulations (Joachim 1986). 

Appendix. Expression of rl(z, y )  for the pn2 spectrum 

For a p n 2  spectrum, the Laplace transform of F:(z ,  y )  gives 

with s = card(A(y)). 

of the form 
The residue u(x) of the second-order pole in p = 0 for an analytic function f( p )  

is u(x) = [ (x  - a) /b]+f  which must be taken equal to zero in our case for x < a - i b  
to obtain a positive function for z > O .  This result applied to (Al)  leads from the 
truncation (5) to 

for z 4 2 p  

s - 1  I Np(Y) - l  
for z > 2ps. 

The expression (8) of r , ( z ,  y)  is then obtained from (A3) used in the definition ( 6 ) .  
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